當前位置:山東東清環保設備有限公司>>醫療一體化污水處理設備>> 湘潭小型污水處理設備
為 500 m3/d,設計水質及排放標準見表1。注:畜禽養殖業污染物排放標準GB18596-2001。2 工藝選型養豬場污水處理常用的工藝為厭氧-好氧-氧化塘,均采用鋼筋混凝土結構,投資大,運行費用高。我們在設計時進行了各種工藝的篩選比較, 用投藥混凝、厭氧接觸工藝、厭氧過濾器、上流式厭氧污泥床、復合式厭氧污泥床和厭氧塘雖然有好的處理效果,但建設費用和運行成本高而無法承受,因而必須尋求新的既簡易又穩定可靠的方法。因此,我們選擇新型厭氧一兼氧組合式穩定塘處理工藝,充分利用規模化豬場的地形地勢,妥善地解決了規模化豬場污水污染進水CODcr的質量濃度超過2 200mg/L時,就開始起泡,且濃度越高起泡越多,污泥流失越大,當進水CODcr的質量濃度超過3 200mg/L,污泥流失量很高,嚴重影響SBR反應器的正常運行。某乳品廠乳品生產的主要原料和資源是鮮牛奶、白糖、花生、核桃、電、水、煤等。在乳品生產過程中,會產生刷罐水,洗瓶水等廢水,與地面沖洗水、廁所沖洗水及少量的生活污水一并進入廠內排水明渠,通過共同的排放口,向車間外排放。廢水中主要含有大量的可溶性有機物(糖類、脂肪酸、蛋白質、淀粉等),可生化性很好,不含有毒有害物質,呈現乳白色,COD濃度在8快速吸附-慢速吸附-吸附平衡.在生物體吸附重金屬的研究中這3個階段的吸附已經被廣泛報道(Sa? et al., 1996; Sar? et al., 2009), 胞外聚合物同Cu2+和Zn2+吸附主要通過絡合、鰲合、離子交換等作用進行, 官能團通過這種方式同重金屬結合不需要耗費大量的能量, 因此, 反應進行的很快, 均能很快能達到吸附平衡.圖 5 EPS吸附金屬離子的吸附平衡圖3.4.2 吸附動力學參數為研究吸附過程的控速步驟和吸附機理, 分別采用擬一級動力學模型(8)和擬二級動力學模型(9)來擬合動度隨進水流量的增加呈增加趨勢.從圖 2b可以看出, 進水流量為50 L?h-1時, 降流區填料濃度隨曝氣強度的增加而增長, 曝氣強度為1.05 m3?h-1時, 降流區填料濃度達到峰值;曝氣強度分別為0.25、0.65、0.85和1.05 m3?h-1時, 填料濃度隨流化床高度的降低而下降.進水流量為200 L?h-1時, 降流區填料濃度隨曝氣強度的增加呈先上升后下降趨勢;曝氣強度分別為0.25、0.45、0.65和0.85 m3?h-1時, 填料濃度隨流化床高度的降低呈先下降后上升趨勢.降流區在相同曝氣強度的工況下, 流化床填料濃度隨進水流量的增加呈增加趨勢.圖 2 填料濃度隨高度變化的曲線圖 7所示.圖 7 二級出水氯消毒過程中AOC變化規律可以發現, 二級出水在氯消毒過程中AOC水平均有不同程度的增長, 消毒5 min時增長較為顯著, 與5 min時氯消耗、UV254變化、三維熒光強度變化顯著的結論相*, 說明AOC的增長可能是由于氯與再生水中的有機物發生了反應.30 min內整體上呈現出先增長后降低的趨勢, 推測可能由于加氯后5 min中, 水樣中的大分子有機物首先和氯反應, 被氧化分解為易被細菌吸收利用的小分子有機物, AOC迅速增長, 而在5~30 min內, 小分子有機物又繼續和氯反應, AOC又有一定的下降, 但下降后的AOC水平仍高于消毒前的AOC水
粒污泥結構更加密實, 具有更小的孔隙度, 能有效地將納米顆粒摒除在污泥外部.不僅如此, EPS也能補償納米TiO2所占據的活性點位, 并藉由這些活性點位來運輸底物, 彌補產酸菌代謝受抑造成的EPS分泌量不足[圖 7(b)].3 結論(1) 低于150 mg?g-1納米TiO2的短期暴露對厭氧顆粒污泥的產酸階段及產甲烷階段的代謝產物總量沒有明顯影響, 但納米TiO2的沖擊負荷會減慢產烷速率.具體參見污水寶商城資料或http:www.dowater。。com更多相關技術文檔。(2) 納米TiO2的*持續暴露對厭氧顆粒污泥反應器的運行穩定性有負面影響, 出水指標顯示產酸菌的代謝受抑比產12)為ων, 相同工況情況下每次取樣3次并求得平均值.PIV實驗在曝氣強度分別為0.25、0.45、0.65、0.85和1.05 m3?h-1和進出水流量分別為50和200 L?h-1組合的工況下依次進行, 實驗時流化床有效容積為31.95 L, 即有效水深710 mm.實驗中激光光源從反應器的左側進入, 如圖 1a所示, CCD相機放置在流化床的正面, 垂直于激光片光源方向.因CCD相機的拍攝范圍有限, 故流場測量區域在保證獲得較高分辨率的前提下, 拍攝區域(圖 1b)選擇為下部區域(282 mm×235 mm)、中部區域(282 mm×235 mm)和上部區域(282 mm×235 mm).激光斷面選取距膜面15 mm的激光斷點:混合污水中堿減量污水占總水量的10%~20%,冬季約10%,夏季約20%,但其CODCr量卻是混合污水總CODCr量的60%。 表1 排水監測結果 分析項目pHCODcr(mg.L-1)BOD5(mg.L-1)色度倍TA(mg.L-1)平均值11.521738874260742波動范圍11.15-11.881275-2050673-1045180-350528-8982試驗及結果現場處理試驗可分為:預處理、生化處理、后處理和組合流程的連續處理等幾個方面。 2.1預處理試驗 2.1.1酸化—混凝處理印染—堿減量混合污水采用一般生化處理不能實現達標排放。根據混合污水中TA占總CODCr量60%以上,TA在酸性條件下可析出[3]以及印染污水,取1 mL*溶液、1 mL檸檬酸溶液和40 mL去離子水于50 mL的離心管,置于30 ℃、150 r?min-1的恒溫振蕩搖床中混合20 min,加入5 mL水合肼溶液,并將溶液總體積定容為50 mL,置于恒溫振 擬合程度越好.通過模型算得的角毛藻在Cd2+初始濃度為10、100和500 mg?L-1下的理論平衡吸附量分別為6.22、93.54和303.03 mg?g-1(表 1), 與實際平衡吸附量6.25、92.81和275.25 mg?g-1相差不大.相似地, 菱形藻和海鏈藻在不同Cd2+初始濃度下的理論平衡吸附量亦與實際平衡吸附量接近(表 1).這些結果說明這3種海洋硅藻對Cd2+的吸附過程較好地符合Pseudo二級模型所描述的吸附過程, Cd2+吸附反應的速率限制步驟可能是化學吸附過程, 每一種硅藻表面與Cd2+之間有化學鍵形成或者發生了離子交換過程.圖 4不同Cd2+初始濃度下3種硅藻吸附Cd2+的Pseudo二
Ni廢水100 mL,調節pH值為6.0,投加對應佳EDTC用量,分別沉淀1~20 min,考察螯合沉淀物的沉降性能,如圖 5所示.圖 5 沉淀時間對絡合Ni2+去除的影響(T=25 ℃,pH=6.0)螯合沉淀物的沉降性能較好,EDTC對Ni2+的去除效率隨著沉降時間的延長而增加.當沉淀時間為8 min 時,Ni的去除率可達到98%以上,殘留Ni2+濃度低于0.1 mg?L-1,之后去除率逐漸趨于穩定.與傳統的化學沉淀法相比,其沉降性能大大提高,同時減少了絮凝劑的使用.如硫化物沉淀法處理低濃度重金屬廢水時,生成的沉淀顆粒較小,沉淀周期較長,同時需要添加一定量的混凝劑和絮凝劑(Kel應部分、氣浮分離部分(含清水箱)、溶氣水制備系統、刮渣部分、電控部分組成。該設備為鋼結構,外形尺寸為:L×B×H=3.5m×2.55m×2.4m,處理污水量為15m3/h。實際廠方購買了1臺處理污水量為10m3h的氣浮設備。4實際治理效果根據浙江海門制藥廠所提供1996年12月~1998年3月份的監測記錄表,在進水量為10m3/h,水溫35℃~36℃的情況下,各處理構筑物的CODCr指標采用加權平均法進行整理,其結果詳見表1。表1各處理單元進出水CODCr指標日期項目厭氧反應器生物接觸氧化池氣浮凈水器總去除率%進水出水去除率%進水出水去除率%進水出水去除率%注:化物,石油類和氨氮等污染物均處于常見水平,而酚污染則處于較高狀態,是這股廢水的主要污染物;由于酚類物質易為微生物降解[1],因此廢水的可生化性較好,結果也表明m(BOD5)/m(COD)值較高,平均為0.56。采用煉油廢水生化污泥經過近1個月的培養,發現載體上生長了大量的微生物(以淺色疏松的絲狀菌為主),廢水中COD有一定的降解(降解量為40—80mgL),但是,廢水中的酚基本上沒有得到降解(降解量僅為2—8mg/L)。這說明,在高濃度酚的存在下,生化污泥中的細菌受到了抑制,缺乏耐酚型微生物。 改用生活污泥進行微生物培養,結果發現,生活污件下菌株CB1對直接大紅9 d內的脫色率變化見圖 6.由圖可知,添加ZnSO4、MgSO4、MnSO4條件下的脫色率均低于對照條件下的脫色率,且脫色率依次減弱.而添加FeCl3、CaCl2、CuSO4條件下的脫色率總體高于對照條件下的脫色率,且脫色率依次增高.故選擇CuSO4和CaCl2兩種金屬離子濃度作為2個因素進行后續的正交試驗.方差分析結果顯示,Sig.值 < 0.05,表明不同金屬離子對T. versicolor CB1脫色直接大紅染料的影響顯著.圖 6金屬離子對菌株CB1脫色直接大紅的影響3.6 正交試驗優化T. versicolor CB1對直接大紅的脫色在單因素試驗的基礎上,選取果糖濃度石墨烯的特征褶皺出現(圖 1c),表明EDTA-2Na的加入對氧化石墨烯和殼聚糖復合材料的形態結構有所改善.圖 2為CS、GC和GEC的透射電鏡(TEM)圖,可以看出,CS(圖 2a)的TEM圖與GC(圖 2b)和GEC(圖 2c)的TEM圖明顯不同,對比在相同放大倍數下的CS結構(圖 2a)與GEC結構(圖 2c),不難看出復合后的材料具有更好的形貌結構,進一步說明GO的引入明顯地改善了CS的形態結構.圖 1 CS(a)、GC(b)、GEC(c)的掃描電鏡圖圖 2 CS(a)、GC(b)和GEC(c)的透射電鏡圖圖 3是CS、GC、GEC的X射線衍射圖譜,從圖中可以看出,GC和GEC在2θ=20.3°和10.8°處分別出現了殼聚糖
吸附過程, 對Cu2+的吸附較Zn2+更為明顯.整個吸附過程都大致可以分為3個階段:?
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,智能制造網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。