基本結構
可編程邏輯控制器實質是一種于工業控制的計算機,
可編程邏輯控制器
[1]其硬件結構基本上與微型計算機相同,基本構成為:
一、電源
的電源在整個系統中起著十分重要的作用。如果沒有一個良好的、可靠的電源系統是無法正常工作的,因此,的制造商對電源的設計和制造也十分重視。一般交流電壓波動在+10%(+15%)范圍內,可以不采取其它措施而將PLC直接連接到交流電網上去
二、*處理單元(CPU)
*處理單元(CPU)是的控制中樞。它按照系統程序賦予的功能接收并存儲從編程器鍵入的用戶程序和數據;檢查電源、存儲器、I/O以及警戒定時器的狀態,并能診斷用戶程序中的語法錯誤。當投入運行時,首先它以掃描的方式接收現場各輸入裝置的狀態和數據,并分別存入I/O映象區,然后從用戶程序存儲器中逐條讀取用戶程序,經過命令解釋后按指令的規定執行邏輯或算數運算的結果送入I/O映象區或數據寄存器內。等所有的用戶程序執行完畢之后,zui后將I/O映象區的各輸出狀態或輸出寄存器內的數據傳送到相應的輸出裝置,如此循環運行,直到停止運行。
為了進一步提高的可靠性,近年來對大型還采用雙CPU構成冗余系統,或采用三CPU的表決式系統。這樣,即使某個CPU出現故障,整個系統仍能正常運行。
三、存儲器
存放系統軟件的存儲器稱為系統程序存儲器。
存放應用軟件的存儲器稱為用戶程序存儲器。
四、輸入輸出接口電路
1.現場輸入接口電路由光耦合電路和微機的輸入接口電路,作用是與現場控制的接口界面的輸入通道。
2.現場輸出接口電路由輸出數據寄存器、選通電路和中斷請求電路集成,作用通過現場輸出接口電路向現場的執行部件輸出相應的控制信號。
五、功能模塊
如計數、定位等功能模塊。
六、通信模塊
工作原理
當投入運行后,其工作過程一般分為三個階段,
[2]即輸入采樣、用戶程序執行和輸出刷新三個階段。完成上述三個階段稱作一個掃描周期。在整個運行期間,的CPU以一定的掃描速度重復執行上述三個階段。
一、輸入采樣階段
在輸入采樣階段,以掃描方式依次地讀入所有輸入狀態和數據,并將它們存入I/O映象區中的相應的單元內。輸入采樣結束后,轉入用戶程序執行和輸出刷新階段。在這兩個階段中,即使輸入狀態和數據發生變化,I/O映象區中的相應單元的狀態和數據也不會改變。因此,如果輸入是脈沖信號,則該脈沖信號的寬度必須大于一個掃描周期,才能保證在任何情況下,該輸入均能被讀入。
二、用戶程序執行階段
在用戶程序執行階段,總是按由上而下的順序依次地掃描用戶程序(梯形圖)。在掃描每一條梯形圖時,又總是先掃描梯形圖左邊的由各觸點構成的控制線路,并按先左后右、先上后下的順序對由觸點構成的控制線路進行邏輯運算,然后根據邏輯運算的結果,刷新該邏輯線圈在系統RAM存儲區中對應位的狀態;或者刷新該輸出線圈在I/O映象區中對應位的狀態;或者確定是否要執行該梯形圖所規定的特殊功能指令。
即,在用戶程序執行過程中,只有輸入點在I/O映象區內的狀態和數據不會發生變化,而其他輸出點和軟設備在I/O映象區或系統RAM存儲區內的狀態和數據都有可能發生變化,而且排在上面的梯形圖,其程序執行結果會對排在下面的凡是用到這些線圈或數據的梯形圖起作用;相反,排在下面的梯形圖,其被刷新的邏輯線圈的狀態或數據只能到下一個掃描周期才能對排在其上面的程序起作用。
在程序執行的過程中如果使用立即I/O指令則可以直接存取I/O點。即使用I/O指令的話,輸入過程影像寄存器的值不會被更新,程序直接從I/O模塊取值,輸出過程影像寄存器會被立即更新,這跟立即輸入有些區別。
三、輸出刷新階段
當掃描用戶程序結束后,就進入輸出刷新階段。在此期間,CPU按照I/O映象區內對應的狀態和數據刷新所有的輸出鎖存電路,再經輸出電路驅動相應的外設。這時,才是的真正輸出。
功能特點
具有以下鮮明的特點。
一、系統構成靈活,擴展容易,以開關量控制為其特長;也能進行連續過程的PID回路控制;并能與上位機構成復雜的控制系統,如DDC和DCS等,實現生產過程的綜合自動化。
二、使用方便,編程簡單,采用簡明的梯形圖、邏輯圖或語句表等編程語言,而無需計算機知識,因此系統開發周期短,現場調試容易。另外,可在線修改程序,改變控制方案而不拆動硬件。
三、能適應各種惡劣的運行環境,抗*力強,可靠性強,遠高于其他各種機型。發展歷史
起源
1968年美國通用汽車公司提出取代繼電器控制裝置的要求;
1969年,美國數字設備公司研制出了*臺PDP—14,在美國通用汽車公司的生產線上試用成功,采用程序化的手段應用于電氣控制,這是*代,稱Programmable,是*的*臺PLC。
1969年,美國研制出世界*臺PDP-14;
1971年,日本研制出*臺DCS-8;
1973年,德國研制出*臺PLC;
1974年,中國研制出*臺PLC。
發展
20世紀70年代初出現了微處理器。人們很快將其引入,使增加了運算、數據傳送及處理等功能,完成了真正具有計算機特征的工業控制裝置。此時的為微機技術和繼電器常規控制概念相結合的產物。個人計算機發展起來后,為了方便和反映可編程控制器的功能特點,定名為ProgrammableLogicController(PLC)。
20世紀70年代中末期,進入實用化發展階段,計算機技術已全面引入可編程控制器中,使其功能發生了飛躍。更高的運算速度、超小型體積、更可靠的工業抗干擾設計、模擬量運算、PID功能及*的性價比奠定了它在現代工業中的地位。
20世紀80年代初,在*工業國家中已獲得廣泛應用。世界上生產可編程控制器的國家日益增多,產量日益上升。這標志著可編程控制器已步入成熟階段。
20世紀80年代至90年代中期,是發展zui快的時期,年增長率一直保持為30~40%。在這時期,PLC在處理模擬量能力、數字運算能力、人機接口能力和網絡能力得到大幅度提高,逐漸進入過程控制領域,在某些應用上取代了在過程控制領域處于統治地位的DCS系統。
20世紀末期,的發展特點是更加適應于現代工業的需要。這個時期發展了大型機和超小型機、誕生了各種各樣的特殊功能單元、生產了各種人機界面單元、通信單元,使應用的工業控制設備的配套更加容易。選型規則在系統設計時,首先應確定控制方案,下一步工作就是工程設計選型。工藝流程的特點和應用要求是設計選型的主要依據。及有關設備應是集成的、標準的,按照易于與工業控制系統形成一個整體,易于擴充其功能的原則選型所選用應是在相關工業領域有投運業績、成熟可靠的系統,的系統硬件、軟件配置及功能應與裝置規模和控制要求相適應。熟悉可編程序控制器、功能表圖及有關的編程語言有利于縮短編程時間,因此,工程設計選型和估算時,應詳細分析工藝過程的特點、控制要求,明確控制任務和范圍確定所需的操作和動作,然后根據控制要求,估算輸入輸出點數、所需存儲器容量、確定的功能、外部設備特性等,zui后選擇有較高性能價格比的和設計相應的控制系統。
一、輸入輸出(I/O)點數的估算
I/O點數估算時應考慮適當的余量,通常根據統計的輸入輸出點數,再增加10%~20%的可擴展余量后,作為輸入輸出點數估算數據。實際訂貨時,還需根據制造廠商的產品特點,對輸入輸出點數進行圓整。
二、存儲器容量的估算
存儲器容量是可編程序控制器本身能提供的硬件存儲單元大小,程序容量是存儲器中用戶應用項目使用的存儲單元的大小,因此程序容量小于存儲器容量。設計階段,由于用戶應用程序還未編制,因此,程序容量在設計階段是未知的,需在程序調試之后才知道。為了設計選型時能對程序容量有一定估算,通常采用存儲器容量的估算來替代。
存儲器內存容量的估算沒有固定的公式,許多文獻資料中給出了不同公式,大體上都是按數字量I/O點數的10~15倍,加上模擬I/O點數的100倍,以此數為內存的總字數(16位為一個字),另外再按此數的25%考慮余量。
三、控制功能的選擇
該選擇包括運算功能、控制功能、通信功能、編程功能、診斷功能和處理速度等特性的選擇。
1、運算功能
簡單的運算功能包括邏輯運算、計時和計數功能;普通的運算功能還包括數據移位、比較等運算功能;較復雜運算功能有代數運算、數據傳送等;大型中還有模擬量的PID運算和其他運算功能。隨著開放系統的出現,目前在中都已具有通信功能,有些產品具有與下位機的通信,有些產品具有與同位機或上位機的通信,有些產品還具有與工廠或企業網進行數據通信的功能。設計選型時應從實際應用的要求出發,合理選用所需的運算功能。大多數應用場合,只需要邏輯運算和計時計數功能,有些應用需要數據傳送和比較,當用于模擬量檢測和控制時,才使用代數運算,數值轉換和PID運算等。要顯示數據時需要譯碼和編碼等運算。
2、控制功能
控制功能包括PID控制運算、前饋補償控制運算、比值控制運算等,應根據控制要求確定。主要用于順序邏輯控制,因此,大多數場合常采用單回路或多回路控制器解決模擬量的控制,有時也采用的智能輸入輸出單元完成所需的控制功能,提高的處理速度和節省存儲器容量。例如采用PID控制單元、高速計數器、帶速度補償的模擬單元、ASC碼轉換單元等。
3、通信功能
大中型系統應支持多種現場總線和標準通信協議(如TCP/IP),需要時應能與工廠管理網(TCP/IP)相連接。通信協議應符合ISO/IEEE通信標準,應是開放的通信網絡。
系統的通信接口應包括串行和并行通信接口、RIO通信口、常用DCS接口等;大中型通信總線(含接口設備和電纜)應1:1冗余配置,通信總線應符合標準,通信距離應滿足裝置實際要求。
系統的通信網絡中,上級的網絡通信速率應大于1Mbps,通信負荷不大于60%。系統的通信網絡主要形式有下列幾種形式:
1)、PC為主站,多臺同型號為從站,組成簡易網絡;
2)、1臺為主站,其他同型號為從站,構成主從式網絡;
3)、網絡通過特定網絡接口連接到大型DCS中作為DCS的子網;
4)、網絡(各廠商的通信網絡)。
為減輕CPU通信任務,根據網絡組成的實際需要,應選擇具有不同通信功能的(如點對點、現場總線、)通信處理器。
4、編程功能
離線編程方式:和編程器公用一個CPU,編程器在編程模式時,CPU只為編程器提供服務,不對現場設備進行控制。完成編程后,編程器切換到運行模式,CPU對現場設備進行控制,不能進行編程。離線編程方式可降低系統成本,但使用和調試不方便。在線編程方式:CPU和編程器有各自的CPU,主機CPU負責現場控制,并在一個掃描周期內與編程器進行數據交換,編程器把在線編制的程序或數據發送到主機,下一掃描周期,主機就根據新收到的程序運行。這種方式成本較高,但系統調試和操作方便,在大中型中常采用。
五種標準化編程語言:順序功能圖(SFC)、梯形圖(LD)、功能模塊圖(FBD)三種圖形化語言和語句表(IL)、結構文本(ST)兩種文本語言。選用的編程語言應遵守其標準(IEC6113123),同時,還應支持多種語言編程形式,如C,Basic等,以滿足特殊控制場合的控制要求。
5、診斷功能
的診斷功能包括硬件和軟件的診斷。硬件診斷通過硬件的邏輯判斷確定硬件的故障位置,軟件診斷分內診斷和外診斷。通過軟件對PLC內部的性能和功能進行診斷是內診斷,通過軟件對的CPU與外部輸入輸出等部件信息交換功能進行診斷是外診斷。
的診斷功能的強弱,直接影響對操作和維護人員技術能力的要求,并影響平均維修時間。
6、處理速度
采用掃描方式工作。從實時性要求來看,處理速度應越快越好,如果信號持續時間小于掃描時間,則將掃描不到該信號,造成信號數據的丟失。
處理速度與用戶程序的長度、CPU處理速度、軟件質量等有關。目前,接點的響應快、速度高,每條二進制指令執行時間約0.2~0.4Ls,因此能適應控制要求高、相應要求快的應用需要。掃描周期(處理器掃描周期)應滿足:小型的掃描時間不大于0.5ms/K;大中型的掃描時間不大于0.2ms/K。
四、的類型
按結構分為整體型和模塊型兩類,按應用環境分為現場安裝和控制室安裝兩類;按CPU字長分為1位、4位、8位、16位、32位、64位等。從應用角度出發,通常可按控制功能或輸入輸出點數選型。
整體型的I/O點數固定,因此用戶選擇的余地較小,用于小型控制系統;模塊型提供多種I/O卡件或插卡,因此用戶可較合理地選擇和配置控制系統的I/O點數,功能擴展方便靈活,一般用于大中型控制系統。
免責聲明
- 凡本網注明"來源:智能制造網"的所有作品,版權均屬于智能制造網,轉載請必須注明智能制造網,http://www.xashilian.com。違反者本網將追究相關法律責任。
- 企業發布的公司新聞、技術文章、資料下載等內容,如涉及侵權、違規遭投訴的,一律由發布企業自行承擔責任,本網有權刪除內容并追溯責任。
- 本網轉載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
2025第十一屆中國國際機電產品交易會 暨先進制造業博覽會
展會城市:合肥市展會時間:2025-09-20