直播推薦
企業(yè)動(dòng)態(tài)
- 上海兆越打造智能化IDC能源系統(tǒng)網(wǎng)絡(luò)方案
- 華為協(xié)同產(chǎn)業(yè)伙伴參與編寫《工業(yè)制造企業(yè)千兆光網(wǎng)建設(shè)指南研究報(bào)告(2024)》
- 首赴華南工博會(huì),歐姆龍以“超越人的自動(dòng)化“ 創(chuàng)新力量加速制造業(yè)質(zhì)效雙升
- 數(shù)智破局·生態(tài)共生:重構(gòu)全球制造新引擎
- 廣東某光電企業(yè)引進(jìn)東莞市皓天試驗(yàn)設(shè)備有限公司紫外老化試驗(yàn)箱
- 東莞市皓天非標(biāo)定制恒溫恒濕試驗(yàn)箱及老化箱成功交付廣東某電子科技企業(yè)
- 長沙老化房完工并順利通過第三方檢測(cè)合格!
- 臭氧老化試驗(yàn)的靜動(dòng)態(tài)博弈:從橡膠龜裂機(jī)理到工業(yè)場(chǎng)景的失效預(yù)警
推薦展會(huì)
隨著城市軌道交通的發(fā)展,實(shí)時(shí)動(dòng)態(tài)數(shù)據(jù)反映成為監(jiān)控機(jī)車狀態(tài)的重要組成部分,而遺傳算法與模糊控制方法所具有很好的魯棒性和形式上的簡單明了使得它必然可以在城市軌道交通上得到巨大應(yīng)用。遺傳算法是一種自然進(jìn)化系統(tǒng)的計(jì)算模型,也是一種通用的求解優(yōu)化問題的適應(yīng)性搜索方法,尤其是后者得到人們關(guān)注和普遍使用。而模糊控制則是近代控制理論中建立在模糊結(jié)合論基礎(chǔ)上的一種基于語言規(guī)則與模糊推理的控制理論。
目前我國城市軌道交通建設(shè)正在蓬勃發(fā)展,伴隨是城市軌道交通信息的大量增多與多信息融合,而在信息融合中經(jīng)常會(huì)運(yùn)用到遺傳算法與模糊規(guī)則相結(jié)合的方法。
2 .信息融合結(jié)構(gòu)方法
信息融合由于其應(yīng)用上的復(fù)雜性和多樣性,決定了信息融合的研究內(nèi)容極其豐富,涉及的基礎(chǔ)理論較多。多傳感器信息融合根據(jù)信息表征的層次結(jié)構(gòu),其基本方法可分為3類:
數(shù)據(jù)層融合:在數(shù)據(jù)層融合中,每一個(gè)傳感器觀測(cè)物體并且組合來自傳感器的原始數(shù)據(jù).然后,進(jìn)行特征識(shí)別過程.此過程一般是從原始數(shù)據(jù)中提取一個(gè)特征矢量來完成,并且根據(jù)此特征做出決策。
特征層融合:在特征層融合中,從觀測(cè)數(shù)據(jù)中提取許多特征矢量后把它們連接成單個(gè)矢量,下一步進(jìn)行識(shí)別.在該情況下,需要的通訊帶寬減小,結(jié)果的性也相應(yīng)減小,主要是因?yàn)樵谠紨?shù)據(jù)中生成特征矢量的同時(shí),信息也在丟失。
決策層融合:在決策層融合中,每一個(gè)傳感器依據(jù)本身的單源數(shù)據(jù)做出決策.這些決策被融合生成zui后的決策,在上面闡述的3種結(jié)構(gòu)中,性是zui差的,但需要的帶寬zui小。
對(duì)于信息融合算法具體可以分為以下四類:估計(jì)方法、分類方法、推理方法和人工智能方法。
2.1 估計(jì)方法
加權(quán)平均法是zui簡單、zui直觀融合多傳感器低層數(shù)據(jù)的方法,該方法將由一組傳感器提供的冗余信息進(jìn)行加權(quán)平均,并將加權(quán)平均值作為信息融合值;利用zui小二乘法原理可導(dǎo)出的數(shù)據(jù)平滑程序在許多情況下能夠去除或減少測(cè)量過程中由于偶然因素帶來的誤差,使平滑后的數(shù)據(jù)一般會(huì)比原數(shù)據(jù)更有規(guī)律性;卡爾曼濾波用于實(shí)時(shí)融合動(dòng)態(tài)的低層次冗余多傳感器數(shù)據(jù),該方法用測(cè)量模型的統(tǒng)計(jì)特性遞推決定在統(tǒng)計(jì)意義下是*的融合數(shù)據(jù)估計(jì)。
2.2 分類方法
分類方法主要有參數(shù)模板法和聚類分析。無監(jiān)督或自組織學(xué)習(xí)算法諸如學(xué)習(xí)向量量化法(learning vector quantization, LVQ),K—均值聚類(K—means clustering),Kohonen 特性圖(Kohonen future map)也常用作多傳感器數(shù)據(jù)的分類。K—均值聚類算法是zui常用的無監(jiān)督學(xué)習(xí)算法之一,而自適應(yīng)K—均值方法的更新規(guī)則成了Kohonen特性圖的基礎(chǔ)。此外自適應(yīng)共振理論(ART)、自適應(yīng)共振理論映射(ARTMAP)和模糊自適應(yīng)共振理論網(wǎng)絡(luò)(fuzzy—ARTnetwork)以自適應(yīng)的方法進(jìn)行傳感器融合。它們能夠自動(dòng)調(diào)整權(quán)值并且能在環(huán)境變化和輸入漂移的情況下保持穩(wěn)定。
2.3 推理方法
貝葉斯估計(jì)是融合靜態(tài)環(huán)境中多傳感器低層信息的一種常用方法.其信息描述為概率分布,適用于具有可加高斯噪聲的不確定性;D—S是基于證據(jù)理論的一種推理算法,是貝葉斯方法的擴(kuò)展。該算法解決了概率中的兩個(gè)困難問題:一是能夠?qū)?ldquo;未知”給出顯式表示;二是當(dāng)證據(jù)對(duì)一個(gè)假設(shè)部分支持時(shí),該證據(jù)對(duì)假設(shè)否定的支持也能用明確的值表示出來。
2.4人工智能
人工智能方法對(duì)融合大量的傳感器信息,用以非線性和不確定的場(chǎng)合頗有優(yōu)勢(shì)。可分為專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)和模糊邏輯。專家系統(tǒng)是一種基于人工智能的計(jì)算機(jī)信息系統(tǒng)。神經(jīng)網(wǎng)絡(luò)是一個(gè)具有高度非線性的超大規(guī)模連續(xù)時(shí)間自適應(yīng)信息處理系統(tǒng)。模糊邏輯是多值邏輯,它允許將傳感器信息融合過程中的不確定性直接表示在推理過程中。模糊集理論的基本思想是把普通集合中隸屬關(guān)系靈活化,使元素對(duì)集合的隸屬度從原來只能取{0,1}中的值擴(kuò)充到[0,1]區(qū)間中的任一數(shù)值,因此很適合于對(duì)傳感器信息不確定性進(jìn)行描述和處理。模糊集表達(dá)了一個(gè)不確定概念,應(yīng)用模糊理論并結(jié)合其它手段與算法,如神經(jīng)網(wǎng)絡(luò)、遺傳算法等,可以取得更好的融合結(jié)果。
3 .車速監(jiān)控方法
3.1 簡介遺傳算法
按照達(dá)爾文的進(jìn)化論中的適者生存理論,計(jì)算科學(xué)學(xué)者提出了進(jìn)化算法。進(jìn)化算法是一種基于自然選擇和遺傳變異等生物進(jìn)化機(jī)制的全局性概率搜索方法。
從整體上來講,遺傳算法是進(jìn)化算法中產(chǎn)生zui早、影響zui大、應(yīng)用也比較廣泛的一個(gè)研究方向和領(lǐng)域,它不僅包含了進(jìn)化算法的基本形式和全部優(yōu)點(diǎn),同時(shí)還具有若干*性能,其優(yōu)點(diǎn)主要有以下幾個(gè)方面:
1) 遺傳算法的搜索過程是從一群初始點(diǎn)開始搜索,而不是從單一的初始點(diǎn)開始搜索,這種機(jī)制意味著搜索過程可以有效地跳過局部極值點(diǎn)。
2) 遺傳算法具有顯著地隱式并行性(implicit parallelism),其進(jìn)化算法雖然在每一代只對(duì)有限解個(gè)體進(jìn)行操作,但處理的信息量為群體規(guī)模的高次方。
3) 遺傳算法形式上簡單明了,便于和其他方法結(jié)合。
4) 遺傳算法具有很強(qiáng)的魯棒性(robustness),即在存在噪聲的情況下,對(duì)同一問題的遺傳算法的多次求解中得到的結(jié)果是相似的。
3.2 遺傳算法對(duì)采集速度值融合
列車速度可由車輪上的傳感器采集的轉(zhuǎn)速求得,但是所測(cè)速度會(huì)有一定誤差,這時(shí)我們可以以短時(shí)間內(nèi)采集速度作為初始代群體開始應(yīng)用遺傳算法進(jìn)行信息優(yōu)化,其過程如下例:
取4個(gè)速度值(s/m):8,13,19,24。
取適應(yīng)值函數(shù)有相同的遞加遞減關(guān)系)。
以輪盤賭方式進(jìn)行個(gè)體優(yōu)勝劣汰的選擇。
表1 初始群體及選擇
接著,我們按照遺傳策略運(yùn)用選擇、交叉(變異概率pm很小,一般在0.005~0.01,設(shè)pm=0.01,則每代有4*5*0.01=0.2個(gè)變異,即認(rèn)為在一代內(nèi)不發(fā)生變異),用以形成下一代群體;如下表2:
表2 交配池群體與交叉
由上表可見,隨著一代的遺傳操作,群體的平均適應(yīng)度提高了,當(dāng)前群體*個(gè)體也得到了改善。隨著迭代次數(shù)的增加,群體將逐漸進(jìn)化到該問題的*解。
3.3 模糊控制
首先設(shè)列車監(jiān)控速度的模糊語言集合如下:
{快,稍快,適中,稍慢,慢}
設(shè)定其相應(yīng)的語言變量,記作:
F(fast)=快
LF(little fast)=稍快
E(equal)=適中
LS(little slowly)=稍慢
S(slowly)=慢
其相應(yīng)隸屬度函數(shù)如下圖1所示,其橫坐標(biāo)標(biāo)示速度快慢,縱坐標(biāo)為隸屬度。為了計(jì)算簡單,提高運(yùn)算速度,采用了線性函數(shù)。
圖1 速度隸屬函數(shù)
以D表示速度狀態(tài),U表示輸出,P表示加速,LP稍加速,F(xiàn)表示保持目前狀態(tài),LN表示稍減速,N表示減速根據(jù)模糊關(guān)系制定相應(yīng)模糊規(guī)則如表3:
表3 模糊規(guī)則控制表
4 .結(jié)束語
本文對(duì)日益發(fā)展的城市軌道交通提出了一種遺傳算法與模糊邏輯相結(jié)合的監(jiān)控方法,形式上簡單明了,應(yīng)用中可有效簡捷地實(shí)現(xiàn)人的控制策略與經(jīng)驗(yàn),且模糊控制中不需被控對(duì)象的數(shù)學(xué)模型即可較好控制。
免責(zé)聲明
- 凡本網(wǎng)注明"來源:智能制造網(wǎng)"的所有作品,版權(quán)均屬于智能制造網(wǎng),轉(zhuǎn)載請(qǐng)必須注明智能制造網(wǎng),http://www.xashilian.com。違反者本網(wǎng)將追究相關(guān)法律責(zé)任。
- 企業(yè)發(fā)布的公司新聞、技術(shù)文章、資料下載等內(nèi)容,如涉及侵權(quán)、違規(guī)遭投訴的,一律由發(fā)布企業(yè)自行承擔(dān)責(zé)任,本網(wǎng)有權(quán)刪除內(nèi)容并追溯責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
2025長三角國際智能儀表/線纜產(chǎn)業(yè)博覽會(huì)
展會(huì)城市:滁州市展會(huì)時(shí)間:2025-11-11