大地资源网视频在线观看新浪,日本春药精油按摩系列,成人av骚妻潮喷,国产xxxx搡xxxxx搡麻豆

正在閱讀:深度學習對自動駕駛汽車意味著什么?

深度學習對自動駕駛汽車意味著什么?

2021-01-07 15:44:12來源:千家網 關鍵詞:深度學習自動駕駛汽車閱讀量:22623

導讀:深度學習是機器學習的一個子集,它使用人工神經網絡來模仿人腦的復雜功能。
  在自動駕駛汽車中使用深度學習可以幫助克服各種挑戰,例如了解行人的行為,找到短的路線以及對人和物體進行準確檢測。
 
  根據一份報告,2018年約有80%的道路交通事故是由于人為錯誤造成的。因此,將自動駕駛汽車納入主流的主要目標之一是消除對人類駕駛員的需求并減少道路致死率。使用自動駕駛汽車進行的實驗無疑表明在一定程度上減少了道路傷亡人數。
 
  但是,仍然有很多人經常看到有關自動駕駛汽車事故的新聞,例如Uber自動駕駛汽車事故在美國亞利桑那州撞死了一名行人。發生事故的原因據說是自動駕駛汽車無法準確檢測和識別行人。為了盡可能地減少此類事故,需要對自動駕駛車輛進行大量的訓練,以準確檢測其路線中是否存在人員和任何其他物體,這就是深度學習的介入。自動駕駛汽車的深度學習可以幫助他們有效地分類和檢測道路和周圍環境中的人或物體。
 
  深度學習是機器學習的一個子集,它使用人工神經網絡來模仿人腦的復雜功能。深度學習可以在沒有任何人工干預的情況下更準確地對對象進行分類。例如,假設有兩個人寫數字九(9),但是他們兩個人都以不同的方式寫數字(一個人寫9,其他人寫一個nine,底部沒有清晰的曲線)。除非掌握了所有可能的寫數字九的方法,否則深度學習網絡以外的AI算法將很難檢測到,盡管形狀不同,但兩個數字都代表九。借助深度神經網絡進行的深度學習可以輕松地將兩個數字都識別為9。深度學習準確地對不同對象進行分類的能力可以解決自動駕駛汽車面臨的一些主要挑戰。
 
  自動駕駛汽車深度學習如何應對某些挑戰
 
  機器學習算法在訓練自動駕駛汽車時面臨特征提取的問題。特征提取要求程序員告訴算法他們應該尋找什么來做出決策。因此,機器學習算法的決策能力在很大程度上取決于程序員的洞察力。深度學習的功能有所不同,消除了特征提取的問題,從而使深度學習神經網絡的檢測和決策更加準確。深度學習可以提高檢測道路上障礙物的準確性和更好的決策能力,可以幫助應對自動駕駛汽車面臨的許多挑戰。
 
  了解復雜的交通行為
 
  駕駛是一個過程,涉及與其他駕駛員和行人的復雜互動。例如,如果騎自行車人打算轉彎,那么他或她將做出手勢示意,以通知附近的其他駕駛員。然后,駕駛員可以放慢其車輛的速度,從而允許騎自行車的人轉彎。人類依賴于通用智能來進行這種社交互動。而且,通過深度學習,自動駕駛汽車現在很有可能與其他駕駛員和行人進行社交互動。深度學習神經網絡可以幫助自動駕駛汽車檢測其他駕駛員和行人給出的導航信號,并采取適當措施避免發生任何碰撞。
 
  在天氣條件下檢測招牌
 
  自動駕駛汽車面臨的另一個主要挑戰是天氣條件。盡管這是任何技術都無法完全解決的環境挑戰,但深度學習可以解決氣候下的問題。例如,在降雪期間,道路上的招牌可能會被雪覆蓋。而且,降雪后的一段時間內,招牌可能僅部分可見。使用其他AI算法,自動駕駛汽車將很難理解招牌上的半個標志。但是借助神經網絡進行的深度學習可以從招牌上的部分可見標志創建完整標志的圖像。神經網絡將不完整的符號發送到神經層,然后將其傳遞給隱藏層,以確定完整的符號應該是什么。基于輸出,神經網絡可以根據招牌上的標志做出決策。
 
  尋找短的旅行路線
 
  地球上的所有動物,包括人類在內,都可以在周圍環境中導航并靈活地探索新區域。由于神經回路的空間行為,它們的導航成為可能。動物的大腦通過在規則的六邊形網格中繪制周圍環境來導航。這些六角形圖案有助于導航,類似于地圖中的網格線。神經模式支持基于矢量的導航的假設。基于矢量的導航使大腦可以計算到所需位置的距離和方向。
 
  可以使用基于矢量的導航功能來訓練深度學習神經網絡,以找到從點A到點B的短路徑。通過將動物大腦使用的相同網格線模式嵌入第一層,深度學習可以計算距離和到達目的地的方向。具有基于矢量的導航和深度學習功能的自動駕駛汽車還可以檢測到任何新近可用的快捷方式的存在,以減少出行時間。
 
  深度學習本身還需要克服諸多挑戰
 
  盡管自動駕駛汽車有很多好處,但僅憑深度學習就無法使自動駕駛汽車成為高級智能的交通工具,因為阻礙自動駕駛汽車走向主流發展的障礙很多。借助深度學習,檢測對象的準確性確實會提高,但要付出大量數據的代價。基于數據表示的深度學習功能。數據在神經網絡的不同層上表示,然后根據數據模式導出輸出。由于深度學習的完整功能是基于數據的,因此與其他AI算法相比,訓練神經網絡需要更多數據,因此很難創建用于訓練它們的數據集。而且,收集訓練神經網絡所需的數據也非常耗時。
 
  使用深度學習神經網絡的另一個挑戰是它們的黑匣子問題。如果程序做出了決定,則程序員可以撤消該決定,以找出程序做出該決定的原因。但是,深度學習不是可追溯的系統,而是在隱藏層中處理數據。開發人員只能找到輸入到神經網絡的數據及其輸出。但是,他們無法找出隱藏層中進行了哪些處理來做出決定。因此,很難知道深度學習網絡失敗的原因,因為沒有人可以追溯到發生失敗的地方。
 
  有時,深度學習網絡甚至無法實現其本來打算完成的任務。神經網絡很難像在不同的視頻幀中一樣在小圖像變換中進行概括。例如,根據一項研究,深卷積網絡將狒狒或貓鼬標記為相同的北極熊,具體取決于背景的微小變化。
 
  無人駕駛汽車是一項實驗,至今尚無人知道結果如何。自動駕駛汽車深度學習能否將其驅動到主流交通工具取決于技術如何進一步發展。即使克服了深度學習的挑戰,自動駕駛汽車的方式也存在其他障礙。這些汽車與IoT設備等多種技術集成在一起,以收集數據,云計算以處理數據,以及5G以提高數據傳輸速度。一旦這些技術能夠有效地協同工作,以建立良好的交通生態系統,自動駕駛汽車就能成為主流。
 
  (原標題:深度學習對自動駕駛汽車意味著什么?)
我要評論
文明上網,理性發言。(您還可以輸入200個字符)

所有評論僅代表網友意見,與本站立場無關。

版權與免責聲明:

凡本站注明“來源:智能制造網”的所有作品,均為浙江興旺寶明通網絡有限公司-智能制造網合法擁有版權或有權使用的作品,未經本站授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:智能制造網”。違反上述聲明者,本站將追究其相關法律責任。

本站轉載并注明自其它來源(非智能制造網)的作品,目的在于傳遞更多信息,并不代表本站贊同其觀點或和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、平臺或個人從本站轉載時,必須保留本站注明的作品第一來源,并自負版權等法律責任。如擅自篡改為“稿件來源:智能制造網”,本站將依法追究責任。

鑒于本站稿件來源廣泛、數量較多,如涉及作品內容、版權等問題,請與本站聯系并提供相關證明材料:聯系電話:0571-89719789;郵箱:1271141964@qq.com。

不想錯過行業資訊?

訂閱 智能制造網APP

一鍵篩選來訂閱

信息更豐富

推薦產品/PRODUCT 更多
智造商城:

PLC工控機嵌入式系統工業以太網工業軟件金屬加工機械包裝機械工程機械倉儲物流環保設備化工設備分析儀器工業機器人3D打印設備生物識別傳感器電機電線電纜輸配電設備電子元器件更多

我要投稿
  • 投稿請發送郵件至:(郵件標題請備注“投稿”)1271141964.qq.com
  • 聯系電話0571-89719789
工業4.0時代智能制造領域“互聯網+”服務平臺
智能制造網APP

功能豐富 實時交流

智能制造網小程序

訂閱獲取更多服務

微信公眾號

關注我們

抖音

智能制造網

抖音號:gkzhan

打開抖音 搜索頁掃一掃

視頻號

智能制造網

公眾號:智能制造網

打開微信掃碼關注視頻號

快手

智能制造網

快手ID:gkzhan2006

打開快手 掃一掃關注
意見反饋
我要投稿
我知道了
主站蜘蛛池模板: 庆阳市| 北票市| 高唐县| 江山市| 龙陵县| 平定县| 汾阳市| 扬中市| 武陟县| 东乡| 彰武县| 贵溪市| 博白县| 隆子县| 乌恰县| 金华市| 芦溪县| 胶南市| 巨野县| 新蔡县| 公安县| 翁牛特旗| 昌乐县| 石景山区| 平定县| 剑川县| 西充县| 县级市| 府谷县| 正安县| 綦江县| 偃师市| 砀山县| 阳泉市| 茂名市| 赣州市| 泾川县| 庐江县| 八宿县| 长沙县| 额济纳旗|